Prof. Hui Zhang, Hunan University, China张辉,教授,博士生导师,湖南大学机器人学院常务副院长、机器人视觉感知与控制技术国家工程研究中心副主任、中国图象图形学学会理事兼副秘书长。入选教育部“长江学者”特聘教授,国家“万人计划”青年拔尖人才,主要从事机器人视觉检测、深度学习图像识别、智能制造机器人技术及应用。 |
Speech Title: Multimodal Intelligent Perception Technology and Applications of UAVs in Complex Power Scenarios (复杂电力场景下无人机多模态智能感知技术及应用)
Abstract:
针对复杂电力场景下无人机巡检任务中的红外热故障识别、线路树障分类、杆塔倾斜检测等问题,提出了基于多模态信息融合的智能感知技术。通过结合可见光图像、红外图像、点云与多光谱数据,解决了环境复杂性、信息不完全性和传感器感知局限等挑战,显著提升了无人机系统在复杂环境中的感知与认知能力。报告重点包括:1)提出了自适应图像配准与预测信息迁移技术,解决了多模态数据的空间对齐问题,精确定位电力设备并进行温度解译;2)设计了基于点云与多光谱数据融合的树障分类方法,充分利用不同模态间的互补性,精准识别电力走廊中的树种,提升了巡检任务的精度与效率;3)开发了多模态信息协同的杆塔倾斜检测与语义分割技术,增强了复杂环境下电力设施巡检的智能化水平。通过多源数据融合与智能处理,本报告展示了如何利用多模态感知技术,提升无人机巡检在复杂电力场景中的效率、准确性和安全性,切实满足国家战略需求。
To address challenges in drone inspection tasks for complex power scenarios, including infrared thermal fault detection, line vegetation classification, and tower tilt detection, this report proposes intelligent perception technologies based on multimodal information fusion. By integrating visible light images, infrared images, point cloud data, and multispectral data, it overcomes challenges such as environmental complexity, information incompleteness, and sensor perception limitations, significantly enhancing the perception and cognition capabilities of UAV systems in complex environments. The report focuses on the following key aspects: 1) Adaptive image registration and predictive information transfer techniques are proposed to address the spatial alignment of multimodal data, enabling precise localization of power equipment and accurate temperature interpretation; 2) A tree obstacle classification method based on point cloud and multispectral data fusion is designed, leveraging the complementarity of different modalities to accurately identify tree species in power corridors, thereby improving the accuracy and efficiency of inspection tasks; 3) Multimodal information-coordinated tower tilt detection and semantic segmentation technologies are developed, enhancing the intelligence level of power facility inspection in complex environments. Through multimodal data fusion and intelligent processing, this report demonstrates how multimodal sensing technologies can improve the efficiency, accuracy, and safety of drone inspections in complex power scenarios, effectively meeting the demands of national strategic needs.